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Atomic supersymmetry provides an analytical effective-potential model useful for
describing certain aspects of Rydberg atoms. Experiments have recently demon-
strated the existence of B.ydberg wave packets localized in the radial coordinates
with p-state angular distribution. This talk shows how atomic supersymmetry can
be used to treat radial Rydberg wave packets via a particular analytical type of
squeezed state, called a radial squeezed state.

1. Introduction

Irradiation of a Rydberg atom with a short laser pulse can produce a radially

localized wave packet with a p-state angular distribution. The time evolution of such

a state initially exhibits some attributes of the classical radial motion, including the

Kepler period [1, 2, 3, 4]. After several radial oscillations, the packet disperses. At

various later times, the quantum wave recombines into single- or multiple-component

packets called revivals [5, 6, 7, 8, 9].

The localization of the initial packet suggests a theoretical description via a co-

herent or squeezed state [10]. However, a direct approach meets technical obstacles

[ll] or generates quantum packets that do not describe the characteristics of radial

p-state excitations of Rydberg atoms in the absence of external fields.

This talk provides a summary of our recently developed framework for the an-

alytical study of Rydberg wave packets [12, 13]. Our approach incorporates non-

hydrogenic aspects of the packets using atomic supersymmetry [14, 15]. This provides

an effective central potential along with analytical wavefunctions R,,.p and exact Ry-

dberg eigenenergies E,,. for a Rydberg electron, expressed in terms of shifted quantum

numbers n* and l*. Recent summaries of the methods and results of atomic super-

symmetry and references to the literature can be found in Ref. [16].
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We use the analytical wavefunctions of atomic supersymmetry to construct a fam-

ily of analytical squeezed states, called radial squeezed states, that form representa-

tions of radial Rydberg wave packets. The procedure begins by mapping the classical

physics associated with the effective potential into the form of a harmonic oscillator.

After the conversion to quantum physics, squeezed states can be derived for the re-

sulting uncertainty relation. The method is based on an extension of the approach of

Ref. [17] for cirular states of hydrogen. The procedure is outlined in sections 2 and 3

below. The time evolution of the resulting radial squeezed states is briefly discussed

in section 4. In what follows, we use atomic units with h = e = m_ = 1.

The reader is referred to Refs. [12, 13] for more details about the subjects presented

in this talk and for more references to the background material.

2. Classical Physics

The classical theory corresponding to atomic supersymmetry uses a central po-

tentlal that leads to the effective one-particle radial hamiltonian

l *2 1 1
1 2 = E* --

H* =- 7P_ + 27.2 r _ 2n.2 , (1)

where pr = ÷ is the radial momentunl. The classical continuous variable l* is a

shifted value of the classical angular momentmn l, arising fi'om the incorporation of

the effects of the central potential. At the quantum level, 1.2 becomes the quantized

quantity l*(l* + 1) of atomic supersymmetry. The energy E* has for convenience

been expressed in terms of a continuous classical variable n', which at the level of

quantum physics converts to the quantized, shifted principal quantum number of

atomic supersymmetry.

When E* is negative, the particle is bound and oscillates between outer and inner

apsidal points, rl and r.2, say. The classical orbital period T_a, which is the time taken

to move from rl to r.2 and back, is given via Eq. (1) as

= .3 (2)

The classical orbit can be shown from Eq. (1) to be a precessing ellipse, obeying

the equation
1 1

-: = l---7 (1 + ecos[f(O-Oo)]) (3)

Here, e = y/1- l'2/n "2, Oo is a constant of the integration, and f = l*/1. For the

radial Rydberg wave packets we discuss below, l*/n* is small and so the corresponding

classical orbits are highly elliptical. For simplicity in what follows, we impose fOo = _.
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Direct efforts to obtain coherent or squeezed states based on this model face

technical obstacles. Instead, we map the theory into a harmonic-oscillator formalism.

We convert to a new set of classical variables, R and P, chosen to have sinusoidal

variation with the angle 0 and given by

1 1 e r 2 • el
R - - sin fO P - R = --- cos fO (4)

r l*_ 1.2 ' f 1.2

In terms of these variables, the classical equations of motion become

R_ fp p = 12f R' r2 (5)

Equation (1) then takes the form of the energy equation for a simple harmonic oscil-

lator of frequency l and energy e2/2f2:

e 2

1 2 112R2 = -- (6)
_P +_- __ 2f2

3. Quantum Physics

At the quantum level, the new classical variables R, P become quantum operators

given by
1 1 1

R- , Pr i (a +-) , (7)
r /*(/*+1) P- f- f r

obeying the commutation relation

[R, P] -
i 1

fr 2 (8)

The uncertainty product ARAP is

1 1

ARAP > -_(-_)
(9)

At a given time, any minimum-uncertainty wavefunctions must therefore obey the

equation

(R - (R))_ = iA(P -(P))_l, , (10)

where the real constant A is given by

A- 2f(AR)2 - AR

(_) Ap
(11)
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At later times, fractional and full revivals appear. The fractional revival consisting

of two separate peaks, which appears at t_ = tr_v/2 __ 1.3 nsec., is shown in Figure

lg, while the full revival appearing at tr*_v__ 2.6 nsec. is shown in Figure lh. These

revivals exhibit all the features expected from the classical analysis, including, for

example, the expected values for the wavefunction periodicity.

Along with the additional analysis contained in Refs. [12, 13], these results indicate

that radial squeezed states are useful models for radial Rydberg wave packets.
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